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Abstract

This project presents the methodology and findings from participation in the Bird-
CLEF 2024 Kaggle challenge [I]], aimed at detecting bird calls within noisy audio sound-
scapes. Significant background noise and overlapping frequencies with bird calls in the
dataset presented substantial challenges. The primary objectives were efficient data
processing and achieving high detection accuracy.

A range of preprocessing techniques, including filtering and spectrogram conversion,
were utilized. Various models were evaluated, including Convolutional Neural Networks
(CNNs), ResNet18, Inception v3, and the pretrained Audio Spectrogram Transformer
(AST) fine-tuned on AudioSet [2, 3]. Among these, the ResNeXt model [4], optimized
using Optuna [5], demonstrated superior performance.

Challenges encountered included inefficient data conversions and the underperfor-
mance of simpler CNN models. The findings emphasize the critical role of model selec-
tion and preprocessing in audio classification tasks. This project offers valuable insights
into managing noisy datasets and optimizing models for bioacoustic applications.

1 Introduction

The BirdCLEF 2024 Challenge seeks to enhance the state-of-the-art in automatic identifi-
cation of under-studied Indian bird species through audio recording analysis. Birds, with
their high mobility and diverse habitat needs, serve as indicators of biodiversity restoration
success or failure based on changes in species assemblages and population numbers [1].

Audio classification has become a crucial aspect of numerous applications, from environ-
mental monitoring to voice recognition systems. This field poses significant challenges due
to the complex and variable nature of audio signals, which often contain substantial back-
ground noise and overlapping frequencies. Addressing these challenges requires sophisticated
data processing techniques and robust classification models to achieve high accuracy.
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In this paper, the approach to addressing the Bird CLEF 2024 challenge, which focuses
on detecting bird calls in noisy audio environments, is detailed. The methodology involves
converting audio signals into spectrograms to leverage image classification models. Key steps
in audio processing included noise reduction and high-pass filtering, with a multithreaded
approach used for efficient data handling.

Spectrograms were generated from 5-second audio snippets for model training. Initial
trials with simple CNNs yielded suboptimal accuracy. Improved results were achieved with
pre-trained models like ResNet18, Inception v3, and ResNeXt. The Audio Spectrogram
Transformer (AST) was also tested, though not successfully implemented due to technical
issues.

The ResNeXt model, optimized with Optuna, showed significant accuracy, with per-
formance measured using the ROC curve, a critical metric for the challenge. This study
underscores the importance of preprocessing in audio classification and demonstrates the
effectiveness of treating audio problems as image recognition tasks, contributing valuable
insights to the field of bioacoustics.

2 Background

2.1 Convolutional Neural Networks (CNNs)

Convolutional Neural Networks (CNNs) are a class of deep learning models particularly well-
suited for processing data with grid-like topologies, such as images and audio spectrograms.
They automatically learn spatial hierarchies of features through the use of convolutional
layers that apply filters to detect local patterns, followed by pooling layers that reduce di-
mensionality while retaining essential information. A typical CNN architecture includes
convolutional layers, activation functions like ReLLU, pooling layers, and fully connected lay-
ers. These networks excel at learning feature representations at various levels of abstraction,
from simple edges in early layers to complex shapes in deeper layers [6]. In audio classifica-
tion, CNNs process spectrograms - visual representations of the audio’s frequency spectrum
over time - utilizing their powerful pattern recognition capabilities to identify and classify au-
dio events [7]. CNNs have proven effective in diverse audio tasks, such as speech recognition,
music genre classification, and - as used in this paper - environmental sound detection.

2.2 PyTorch

PyTorch, an open-source deep learning framework developed by Facebook’s Al Research lab
(FAIR), is highly popular in research and industry for its dynamic computational graph,
ease of use, and flexibility. It allows developers to build and train neural networks using
a Pythonic interface, suitable for both beginners and experts. A key feature of PyTorch
is the ability to dynamically define and modify network architectures, aiding research and
experimentation. It offers robust GPU acceleration, enabling efficient training of large-scale
models. With a comprehensive library of pre-built neural network layers, loss functions, and
optimization algorithms, PyTorch supports rapid prototyping and deployment of machine
learning models. Additionally, PyTorch integrates seamlessly with Python libraries like
NumPy and SciPy, further enhancing its versatility and making it a powerful tool for deep
learning development and experimentation.[§].



2.3 Evaluation Metrics

Evaluation metrics are crucial for assessing machine learning models’ performance, guiding
model selection, and understanding their effectiveness. Accuracy measures the proportion of
correct predictions among all predictions. For binary classification, the Receiver Operating
Characteristic (ROC) curve and Area Under the Curve (AUC) are particularly valuable.
The ROC curve plots the true positive rate against the false positive rate across different
thresholds, providing a detailed performance overview. The AUC summarizes this perfor-
mance into a single value, with values closer to 1 indicating better discrimination between
positive and negative classes [9].

2.4 Audio Filters
2.4.1 Noisereduce

NoiseReduce is a Python library designed to reduce noise in audio recordings, leveraging
advanced algorithms to remove unwanted sounds while preserving the primary signal’s qual-
ity. This is particularly useful in applications like bioacoustic research, where background
noise can hinder the accuracy of bird call detection models. By improving the signal-to-noise
ratio, NoiseReduce enhances audio clarity, facilitating more accurate analysis and classifi-
cation. The librOary supports various noise reduction methods, such as spectral gating and
Wiener filtering, and offers an easy-to-use API, making it a valuable tool for researchers and
developers working with noisy audio datasets [10)].

2.4.2 Butterworth

Highpass filtering with a Butterworth filter is favored in signal processing due to its maxi-
mally flat frequency response, which avoids ripples that can distort the signal. This makes
it effective for removing low-frequency noise while preserving high-frequency components,
such as bird calls in bioacoustic studies [11]. The Butterworth filter’s relatively linear phase
response maintains the waveform’s integrity, crucial for applications like real-time audio
processing and temporal pattern analysis [12]. The implementation of Butterworth filters
is conveniently available in the SciPy package, providing an accessible and efficient tool for
signal processing tasks [13].

3 Bird Call Classification

3.1 Dataset

The dataset for this study is sourced from the Bird CLEF 2024 Challenge on its Kaggle web-
page, with audio recordings generously uploaded by users of Xenocanto.org, a community-
driven platform for sharing wildlife sounds. The recordings used in the challenge were pri-
marily made in the Western Ghats biodiverisity hotspot.

The dataset is organized into several directories and files:

e train audio: Contains short audio recordings of individual bird calls in ogg format,
downsampled to 32 kHz.



e test soundcapes: Populated with approximately 1,100 4-minute length audio record-

ings used for scoring when the notebook is submitted.

e train metadata.csv: Provides metadata for the training data, including species la-

bels, geographic coordinates, and file names.

e sample submission.csv: A sample submission file with fields for row IDs and bird

ID columns, where participants provide the probability of each bird species’ presence.

The competition however uses a hidden test set which is made available after the sub-
mitted notebook is scored.

3.2

Data Preprocessing

Preprocessing is the most crucial step in preparing our bird call audio data for the model
training. It involves various techniques to enhance the quality of the data and convert it
into a format suitable for the CNNs to train on.

3.2.1 Initial Preprocessing Attempts

Initially, a variety of preprocessing techniques were explored to enhance the audio data
quality. These techniques included:

1.

High-Pass Filtering: Applied to remove low-frequency noise below a cutoff fre-
quency, typically set at 1000 Hz, using a Butterworth filter [13].

Silence Removal: Utilized to detect and remove silent sections from the audio using
the ‘pydub‘ library, aiming to reduce irrelevant data.

. Normalization: Adjusted the audio signals to a uniform range to minimize the impact

of varying recording conditions [14].

Amplitude-Based Filtering: Filtered out low-amplitude segments to focus on more
significant parts of the audio.

. Noise Reduction: Employed spectral gating and adaptive filtering techniques to

remove background noise [15].

Compression: Applied dynamic range compression to manage variations in audio
amplitude.

Despite the comprehensive nature of these preprocessing steps, it was found that many
were either redundant or had minimal impact on the performance of the machine learning
models. Consequently, the preprocessing pipeline was streamlined to improve efficiency and
effectiveness.



3.2.2 Optimized Preprocessing Pipeline

The final preprocessing pipeline has been optimized to include only the most impactful
techniques. The simplified steps are:

1. noisereduce: Utilizing the ‘noisereduce’ library to effectively reduce background
noise, improving the signal-to-noise ratio[10].

2. Segmentation: Dividing long audio recordings into fixed-length segments of five sec-
onds each. This ensures that each segment can be processed independently, facilitating
parallel processing and reducing computational load [16].

3. Spectrogram Generation: Creating Mel-scaled spectrograms [17] from the audio
segments, focusing on frequencies between 2000 and 8000 Hz. For this task, the library
librosa’ is utilized [I8]. These spectrograms are then converted to grayscale images of
a fixed square size (224x224 pixels), enhancing the model’s ability to process the data
uniformly.

Furthermore, the entire preprocessing pipeline has been parallelized to make use of multi-
ple CPU cores, significantly speeding up the processing time. This parallelization is achieved
using Python’s ‘multiprocessing’ library [19], allowing simultaneous processing of multiple
audio files.

Figure [I] shows the various stages of preprocessing.

3.3 Classification with CNNs
3.3.1 Baseline CNN Implementation

For the study, a baseline Convolutional Neural Network (CNN) was developed utilizing
TensorFlow to classify bird spectrogram images. The purpose of the baseline model was to
establish a reference performance metric, allowing the efficacy of more complex architectures
in subsequent experiments to be gauged. The preprocessing pipeline involved resizing the
spectrogram images to 224x224 pixels and converting them into TensorFlow tensors. The
dataset was partitioned into an 80-20 split for training and validation purposes.

The baseline model architecture consisted of three convolutional layers with filter sizes
of 32, 64, and 128, respectively, and a kernel size of 3. Each convolutional layer was followed
by a Batch Normalization layer and a max-pooling layer with a kernel size of 2 and a stride
of 2. The flattened output from the convolutional layers was fed into a dense layer with
128 neurons, followed by a dropout layer with a probability of 0.5 to prevent overfitting.
The final layer was a dense layer that produced output corresponding to the number of bird
species classes. The architecture of the baseline CNN is illustrated in Figure [2]

The model was originally intended to be trained for 30 epochs with a batch size of 32 using
the Adam optimizer and the sparse categorical cross-entropy loss function. To augment the
training data, a data augmentation pipeline was implemented, including random horizontal
and vertical flips and rotations. Model checkpoints were saved every 500 steps to facilitate
recovery and continuation of training. However, the training was stopped after 5 epochs
because it took too much time. It was later learned that the data augmentation flipping
and rotating did not improve the model and could potentially harm the model, as the bird



calls in the spectrograms are supposed to have their original orientation and unique look.
However, it must be said that this is purely speculative, as this was not tested explicitly.

This basic model served as a proof of concept for training a CNN with the spectrogram
data provided. The results from this model served as a benchmark for evaluating the per-
formance improvements achieved by more sophisticated models developed in later stages of
the project.

3.3.2 Resnet-18

In the study, the Resnet-18 architecture, a well-established deep learning model introduced
by He et al. [20], was the first pre-trained model used for the task.

Architecture and Design: The Resnet-18 model consists of 18 layers, incorporating
convolutional layers, batch normalization, ReLLU activations, and fully connected layers. The
model’s architecture is built upon residual blocks, each comprising two convolutional layers
with shortcut connections that bypass one or more layers, enabling the network to learn
residual functions relative to the layer inputs.

Training Process: The model was trained for 25 epochs. During each epoch, check-
points were saved, and metrics such as accuracy, loss, and ROC were calculated and exported.
The code was designed to allow for training to be paused and resumed from any checkpoint.
However, a random seed was not set.

Upon pausing at epoch 22, an extension of the training to 50 epochs was planned. After
resuming, a significant jump in accuracy was observed, as shown in Figure [3] This was
traced back to the random reshuffling of the test and validation splits due to the missing
seed. The consistency of the training process was disrupted by this reshufling.

Impact of Missing Seed: Restarting the training without setting a random seed led
to the following issues:

e Different Data Splits: Different training and validation sets were used in the resumed
run, causing variations in performance metrics.

e Inconsistent Results: Significant variations in the model’s performance were ob-
served compared to the first run, complicating the determination of whether observed
differences were due to actual model changes or random splits.

e Evaluation Variability: Non-comparable evaluation results were produced due to
different validation sets in each run.

3.3.3 Inception v3

Inception v3 is a deep convolutional neural network architecture that has been widely used
for image classification tasks. It was introduced by Szegedy et al. [2I]. The architecture is
known for its efficiency and effectiveness in achieving high accuracy on image classification
benchmarks.

Architecture and Design: Inception v3 is built upon the success of previous Inception
architectures (e.g., Inception vl and v2), incorporating several improvements to enhance
both the performance and computational efficiency. The key components of Inception v3
include:



e Factorization into Smaller Convolutions: Instead of large convolutional filters,
Inception v3 uses smaller convolutions (e.g., 1x1, 3x3) to reduce computational cost
while maintaining the representational power.

e Asymmetric Convolutions: Inception v3 employs asymmetric convolutions, such
as 3x3 followed by 1x1, to further reduce the number of parameters.

e Auxiliary Classifiers: Intermediate auxiliary classifiers are used during training to
improve gradient flow and prevent the vanishing gradient problem. In our implemen-
tation, we do not use it to reduce the computational complexity.

e Grid Size Reduction: The architecture incorporates grid size reduction techniques
to downsample feature maps efficiently without losing important spatial information.

The architecture of our implementation is illustrated in Figure [4]

3.3.4 ResNeXt-50

ResNeXt-50 is a deep convolutional neural network architecture that has been widely used
for image classification tasks. It was introduced by Xie et al. in their paper "Aggregated
Residual Transformations for Deep Neural Networks" (2017). The architecture is known for
its efficiency and effectiveness in achieving high accuracy on image classification benchmarks.

Architecture and Design: ResNeXt-50 builds upon the success of the ResNet archi-
tecture by incorporating the concept of "cardinality" (the size of the set of transformations)
to improve model performance without significantly increasing computational complexity.
The key components of ResNeXt-50 include:

¢ Residual Blocks: Similar to ResNet, ResNeXt-50 uses residual connections to facili-
tate gradient flow and training of deep networks.

o Aggregated Transformations: Instead of using a single transformation, ResNeXt-
50 aggregates multiple transformations in parallel, which increases the model’s repre-
sentation capacity.

e Cardinality: The number of parallel transformations, which is a new dimension to
scale up the model alongside depth and width.

Training Process The training process for the ResNeXt-50 model involved leveraging
Optuna for hyperparameter tuning to optimize performance on the roc-auc metric. Initially,
spectrogram images generated from the audio data were preprocessed using standard trans-
formations such as resizing, normalization, and conversion to tensors. The dataset was then
split into training and validation sets, with 80 percent of the data allocated for training and
20 percent for validation. The final fully connected layer was modified to match the number
of classes in the dataset.

Key hyperparameters, specifically batch size and learning rate, were optimized using Op-
tuna. During each trial, the model was trained for 5 epochs using the Adam optimizer, and
its performance was evaluated based on the validation set. Metrics such as training and
validation losses, validation accuracy, and ROC-AUC scores were recorded for each epoch.



Optuna’s pruning feature was used to halt underperforming trials early, thus conserving
computational resources. After the optimization process, the best-performing model was
identified, and its training and validation metrics were plotted for further analysis. This
approach ensured that the most effective hyperparameter configuration was achieved, signif-
icantly enhancing the model’s performance.

A seed was also set for reproducibility.

3.4 Failed approach with MIT-AST

In exploring various approaches for the challenge, an attempt was made to utilize the Audio
Spectrogram Transformer (AST) to directly process the audio data, bypassing the need for
spectrogram images that the CNNs rely on. This approach required different preprocessing
steps, as the transformer could potentially handle raw audio inputs.

Initially, there were problems with the audio file format, as the transformer could not
work on ogg files and 32kHz sampling rate. Consequently, the audio data had to be converted
and resampled to 16kHz. For this conversion, SoX [22] and PyDub [23] were utilized.

However, significant implementation difficulties were encountered with the AST model.
An initial issue arose with a cryptic error message stating:

AssertionError: choose a window size 400 that is [2, 1]

After extensive trial and error and consulting with the model’s author on GitHub, it was
determined that the problem was due to the use of an incorrect feature extractor:

feature_extractor = ASTFeatureExtractor.from_pretrained(model_name)

Switching to an alternative feature extractor:

feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained (model_name)

resolved the feature extraction step. Despite this progress, subsequent cryptic errors
during model training proved to be significant obstacles within the project’s time constraints.
Specifically, the new errors lacked sufficient documentation or community support, making
troubleshooting exceptionally challenging. The combination of these technical hurdles and
the limited time available for the competition led to the decision to discontinue further
attempts with the AST model.

The differences in preprocessing between the CNN and the AST approaches are notable.
For CNNs, the preprocessing involved converting audio signals into spectrogram images,
which capture the frequency spectrum over time and provide a visual representation suitable
for image-based models. In contrast, the AST approach aimed to process raw audio data di-
rectly, which would have required extracting relevant audio features without the intermediate
step of spectrogram conversion.

Given the circumstances, focus was redirected to the ResNeXt model, which demon-
strated more promising and reliable performance in the classification tasks. The shift in
focus not only ensured the efficient use of available resources but also underscored the im-
portance of adaptability and problem-solving in machine learning research.
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4 Results

4.1 Performance Metrics

The performance of the models was evaluated using accuracy and ROC curves on the val-
idation dataset, providing a comprehensive comparison of their classification capabilities.
Accuracy, defined as the proportion of correctly classified bird species among all samples,
offers a direct measure of model performance. Additionally, ROC (Receiver Operating Char-
acteristic) curves, which plot the true positive rate (sensitivity) against the false positive rate
(1-specificity) across various thresholds, allow for a detailed comparison of the models’ abil-
ity to distinguish between positive and negative classes. Table [l| presents the accuracy scores
for each model, while the Figures in the appendix visually compares their ROC curves, high-
lighting differences in their classification performance. This combined evaluation helps in
understanding not only the overall effectiveness but also the robustness of each model.

Model Train Loss | Validation Loss | Validation Accuracy | Validation AUC
Baseline-CNN 1.0518 4.3762 0.4466 0.8830
Resnet-18 0.5508 1.2262 0.7211 0.9447
InceptionV3 0.2055 1.5339 0.7467 0.9839
ResNext-50 0.2433 1.3121 0.7511 0.9880

Table 1: Metrics across all our trained models

4.2 Discussion

The results indicate a clear progression in model performance with increasing complexity
and sophistication of the architectures. The ResNeXt-50 model, in particular, demonstrated
notable improvements over the baseline CNN and other models tested. This suggests that
more advanced architectures can significantly enhance the classification accuracy for bird
spectrogram images.

5 Future Work

Building on the findings and challenges of this project, several areas for improvement have
been identified for future work.

Early Optimization One critical insight from the study is the importance of using op-
timization tools, such as Optuna, early in the process. The power of these tools can be
utilized to save a considerable amount of time by systematically tuning hyperparameters
and improving model performance from the start.

Advanced Validation Techniques With more time, different validation methods such
as k-fold cross-validation could be explored. This approach would provide a more robust
evaluation of model performance by ensuring that the model is tested on multiple subsets of
the data, reducing the risk of overfitting and improving generalizability.



Transformer Models A significant future direction is the implementation of transformer-
based models. Unlike CNNs that rely on spectrogram images, transformers can work directly
on raw audio files. The performance of transformers in terms of training time and model
accuracy could be investigated to provide valuable insights and potentially enhance the
detection capabilities. This comparison could reveal whether transformers offer substantial
advantages over CNNs for audio classification tasks.

6 Conclusion

This study aimed to explore advanced approaches to bird call detection in the Bird CLEF 2024
Challenge, leveraging Convolutional Neural Networks (CNNs) and Transformers. Through
extensive experimentation with various models and preprocessing techniques, the ResNeXt
model, optimized using Optuna, was identified as the most effective in handling the noisy
audio dataset.

Despite the promising results, several key challenges and lessons emerged from this
project:

Kaggle Submission Struggles A significant challenge was encountered in the timely
submission of results on Kaggle. Unfortunately, this critical step was postponed until the
last week. Due to unexpected complications, the submission process could not be completed.
In future projects, this aspect will be prioritized early on to receive timely feedback and
adjust approaches accordingly.

Consistency in Strategy The approach was initially broad and exploratory, leading to
a wide range of attempted methods and models. While valuable insights were provided, this
also resulted in time constraints and a lack of focus towards the end of the competition.
Establishing a solid strategy early on and adhering to it could have streamlined efforts and
improved overall results.

Community Engagement Another missed opportunity was the engagement with the
Kaggle community. Interaction with other participants could have provided different per-
spectives and innovative approaches that might have been adapted early in the challenge.
Future participation will include active community engagement to leverage collective knowl-
edge and enhance solutions.

7 Individual Work

We supported each other throughout the entire project and maintained constant communi-
cation. The exchange of ideas and teamwork were excellent, making it a positive experience.
There were many discussions in which we consistently found effective solutions for how to
proceed. Unfortunately, early in the project, we lost our third team member as he decided
to withdraw. However, we adapted to this change and redistributed the workload between
the two remaining members.
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Philipp Unger My main focus was testing various preprocessing methods. I experimented
with multiple approaches and different combinations of filters.

The model part, Spencer and I developed in parallel. My focus was initially on the first
Baseline-CNN approach, which was in TensorFlow and was quickly discarded, and later on
ResNet-18 and its optimization. Later on, I worked on the Audio Spectrogram Transformer
(AST), which unfortunately did not succeed. In the end, I dedicated many of my working
hours to the Kaggle submission.

Spencer Apeadjei-Duodu Using the generated spectrogram images from Philipp’s pre-
processing implementation, I initially experimented with a Baseline CNN model in PyTorch.
Following this, I planned to explore the Inception v3 and ResNeXt-50 models. For the
ResNeXt-50 model, I set up hyperparameter tuning trials using Optuna to optimize its per-
formance. However, despite my efforts to help with submission, I encountered challenges
with the inference stage and was unable to successfully submit to Kaggle.
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Figure 1: The progressive stages of preprocessing the spectrogram images.
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Figure 2: Baseline CNN Architecture for Bird Spectrogram Classification
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Figure 6: Inception Performance Metrics with 20 epochs
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Figure 7: Inception v3 ROC-AUC Curve
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Figure 8: Resnext-50 hyperparameter tuning of 5 epochs
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